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Recent studies have confirmed that hyperhomocysteinemia is associated with 
gastrointestinal diseases; however, the direct effect of  homocysteine on gastrointestinal 
reactivity still remains unknown. The aim of  this study was to demonstrate how 
homocysteine may affect nitric oxide mediated duodenal relaxation and whether 
cholinergic receptors and K+ channels take part in stimulating motility, as well as to 
explore whether oxidative stress is associated with homocysteine-mediated effects. 
Experiments were carried out on male rats, body mass 250-300 g. Two groups of  
animals were treated by i.p. application of  saline and D,L-Hcy (0.6 μmol/g bm). After 
2h of  incubation, the duodenal segments were prepared for biochemical analysis and 
contractile response measurements in an organ bath with Tyrode’s solution. Effects 
of  TEA (10 mmol/L) and L-NAME (30 μmol/L) on duodenal contractility in the 
presence of  D,L-Hcy (0.6 μmol/g bm) were investigated. Elevated homocysteine levels 
seem to be of  crucial importance for the deterioration of  contractility through nitric 
oxide mediated relaxation, and, in part, by activation of  K+ channels. Hcy showed 
direct promuscarinic effects, since 30 min pretreatment of  rat duodenum significantly 
enhanced the contractile effect of  increasing concentrations of  ACh (10-9-10-2 
mol/L). Catalase activity, superoxide dismutase, glutathione peroxidase and the total 
antioxidant system were reduced while the thiobarbituric acid-reactive substances level 
was elevated. Our data showed a consistent profile of  gastrointestinal injury elicited 
by sulfur-containing amino acid-homocysteine. This could contribute to explain, at 
least in part, the mechanisms involved in human gastrointestinal diseases associated to 
hyperhomocysteinemia.
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INTRODUCTION

Homocysteine (Hcy) is a sulfur-containing amino acid synthesized during transformation 
of  methionine to cysteine in methionine metabolism [1]. Several observational studies 
have shown that a raised blood Hcy level – hyperhomocysteinemia (HHC) is a risk 
factor for cardiovascular events, including ischemic heart disease, chronic kidney 
disease and cerebrovascular disease [2,3]. 
Numerous clinical studies have shown that an elevated plasma homocysteine level 
might be an independent risk factor for gastrointestinal diseases. Recent data have 
explored the relation between HHC and inflammatory bowel disease (IBD) condition, 
and some authors have suggested an involvement of  Hcy in the pathogenesis of  
these diseases [4,5]. Inflammatory bowel disease, including Crohn’s disease (CD) and 
ulcerative colitis (UC), are a group of  chronic intestinal disorders with a multifactorial 
etiology [6]. A study by Jiang et al. [7] showed that Hcy-related gene and metabolites 
are involved in the pathogenesis of  UC. Increased homocysteine levels in the colonic 
mucosa and plasma of  patients with IBD may play a role in the pathogenesis of  
CD and UC [8]. Evolution of  CD can be riddled with intestinal and extra-intestinal 
complications, particularly atherothrombotic events [9]. However, the increased Hcy 
concentrations in patients with IBD may also be a consequence of  the disease itself  
because the gastrointestinal tract is responsible for much of  the metabolism of  sulfur 
amino acids.   
A proinflammatory role of  Hcy in IBD was also suggested [10]. Hyperhomocysteinemia 
is relatively frequent in patients with celiac disease [11], and may be a risk marker for 
colorectal cancer, gastric cancer and increased colorectal carcinogenesis in IBD patients 
[12-14]. These findings lead us to investigate Hcy effects on the gastrointestinal system 
under laboratory conditions.
Literature data are controversial about the effects of  HHC on gastrointestinal contractility. 
Intestinal contractility is decreased in HHC due to matrix metalloproteinase-9 
(MMP-9)-induced intestinal remodeling in mice colon [15]. Increased plasma Hcy 
concentration has been implicated in constipation (lowered fecal output), indicating 
that HHC itself  may be causing gastrointestinal distress. Constipation as a motility 
disorder is common in the elderly. Lowering plasma levels of  homocysteine in nursing 
home residents improved constipation [16].
It is well known that NO is released by non-adrenergic, non-cholinergic (NANC) 
inhibitory neurons in a variety of  tissues, including gastrointestinal (GI) smooth 
muscles [17]. Nitric oxide synthesizing neurons are distributed extensively in the 
mysenteric and submucosal nerve networks of  rats and humans [18-21]. Functional in 
vitro and in vivo studies provide convincing evidence in support of  the notion that NO 
is released by NANC inhibitory motoneurons mediating relaxation of  the mammalian 
gut [22-24]. 
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Recent studies have suggested that part of  the hyperpolarizing effects of  NO may be 
mediated by stretch-dependent Kþ (SDK) channels that are expressed in GI smooth 
muscles [25]. Previously was demonstrated that the sulfur-containing amino acid 
methionine acted as a specific blocker of  stretch dependent potassium channels and 
nitrergic responses in the murine colon [26].
Hyperhomocysteinaemia has been suggested to be implicated in the imbalance between 
pro-oxidants and antioxidants linked to its pro-oxidant properties or in the impairment 
of  antioxidant systems. Antioxidant defense is composed of  enzymatic (superoxide 
dismutase - SOD, catalase - CAT, glutathione peroxidase - GPx), and non-enzymatic 
(vitamin A, vitamin E, vitamin C, thiol antioxidants, albumin, bilirubin, uric acid) 
antioxidants [27]. Total antioxidant status (TAS) consists of  all antioxidants present in 
body fluids. Lipid peroxidation, which is mediated by free radicals, is considered to be 
the major mechanism of  cell membrane destruction and cell damage. Alteration in the 
oxidant - antioxidant profile is known to occur in IBD. Growing evidence suggests that 
HHC may promote chronic intestinal mucosa inflammation, mainly through oxidative 
stress [28-30]. Oxidative stress induces not only gastric mucosal injury, but also gastric 
motility dysfunction, such as diabetic gastroparesis. Gastroparesis is thought to be 
caused by ROS-induced damage of  the networks of  the interstitial cells of  Cajal [31]. 
The aim of  the current study was to test the hypotheses that a high level of  homocysteine 
was associated with the digestive motility disorders by impaired NO-dependent 
relaxation of  the gastrointestinal smooth muscle by activating SDK channels and 
by increasing oxidative stress. We also tested cholinergic receptors involvement in 
homocysteine effects.

MATERIAL AND METHODS

Acute D,L-homocysteine administration

Sixteen male adult albino rats (Rattus norvegicus) of  the Wistar strain (3 months old) 
weighing 220 ± 20 g were used. Four animals were housed per cage. Animals were 
acclimatized to standard animal laboratory conditions for five days (12:12-h light–dark 
cycle, temperature 22 ± 2 °C and relative humidity 50 ± 5%). Rats were randomly 
divided into two groups of  eight rats each for the control group (C) and experimental 
group (EG). They received a single intraperitoneal (i.p.) injection of  1 ml of  saline (C) 
or 0.6 μmol/g body mass of  D,L-homocysteine (EG). After incubation of  2 hours 
in standard laboratory conditions, the animals were sacrificed by decapitation and 
dissection of  the duodenum was performed. Organ samples of  both groups were 
immediately removed and prepared for biochemical assays and contractile response 
measurements. After the weight was measured, 0.5 g segments of  tissue were 
homogenized in 5ml of  phosphate buffer. The homogenates were centrifuged (10 
min, 10000 rpm) and the clear supernatant was kept at -20C° for biochemical analysis 
(index of  lipid peroxidation, total antioxidant status- TAS, CAT, SOD, GPx activity 
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and acetylcholinesterase activity). The contractile response was obtained in the isolated 
organ bath.

Isolated duodenum preparation

As previously described, after 2 h incubation in the D,L-Hcy, duodenal segments of  
about 2 cm in length were quickly removed just distal to the pylorus and vertically 
suspended in a 50 ml isolated organ bath filled with Tyrode’s solution of  the following 
composition (mM) : NaCl 136.9, KCl 2.7, CaCl2 1.0, NaHCO3 11.9, NaH2PO4 0.4 
and glucose 5.6. The solution was maintained at 36±1ºC and gassed with a mixture 
of  O2 (95%) and CO2 (5%) at atmospheric pressure. After an equilibration period of  
30 min, contractile responses were recorded with an isometric transducer connected 
to a Sensor Medics Dynograph R511A recorder. Preparations were placed under a 
resting tension of  1 g. Tissue responses (resting tone, amplitude of  contractions) were 
measured as changes in isometric tension of  the duodenum. The responses were than 
calculated and expressed in milligrams (mg). Frequency of  contractions was calculated 
as the number of  contractions per minute. 
Cumulative concentration-contractile response curves for acetylcholine in the absence 
and presence of  D,L-homocysteine were determined at 15 min intervals. Each dose 
of  acetylcholine was allowed to produce its full effect (15 ± 3 s contact) before the 
concentration of  the drug in the bath was increased in geometric progression by ratio 
two. Each experiment was separated from the other by at least two washes, in order 
to obtain the same baseline. Responses from each experiment were demonstrated as 
amplitude of  the contraction shown as mg of  tension. Subsequent concentration-
response curves were drawn and the EC50 values (the concentration producing a 50% 
maximal contractile effect) were determined for both groups by the Hill transformation: 
log E/log (Emax - E) versus log concentration. 
To determine the involvement of  NO and potassium channels on D,L-homocysteine  
effects on duodenal contractions, segments were exposed to NOS inhibitor 
L-NAME (N-nitro-L-arginine methyl ester) 10μmol/L and K-channels blocker TEA 
(Tetraethylammonium chloride) 10 mmol/L. 

Measurement of acetylcholinesterase activity

Acetylcholinesterase activity was determined by Ellman’s method. The incubation 
mixture contained duodenal homogenate in phosphate buffer (pH 8.0). The mixture 
was incubated at 37 ºC for 10 minutes. Acetylcholine iodide and 5,5’-dithionitrobenzoic 
acid (DTNB), used as substrates, were added, and the reaction was started. The 
reaction was monitored spectrophotometrically (Gilford Instrument, Model 250) by 
an increase in the absorbance (ΔA) at 412nm. An assay, without the tissue homogenate, 
was used as a blank probe. The measurements were assessed with double probes, and 
the specific AChE activity was presented as U/mg protein. 
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Index of lipid peroxidation measurement

Lipid peroxidation level was estimated by measurement of  thiobarbituric acid 
reactive substances (TBARS) in the tissue according to the fluorimetric method by 
Yagi [32]. The pink chromogen produced by the reaction of  thiobarbituric acid with 
lipid peroxidation products such as malondialdehyde (MDA) was estimated using 
1,1,3,3-tetraethoxypropane as standard MDA.   The absorbance of  clear supernatant 
was measured against reference blank at 535 nm. Results were expressed as μmol/mg 
proteins.

Tissue total antioxidant status (TAS)

TAS was measured on Ultrospect 2000 Analyzer with Randox reagent set (Randox). 
The determination was based on the reaction of  2,2,-azino-di-(3-ethylbenythiazoline 
sulfonate) (ABTS+) with peroxidase (metmyoglobin) and H2O2 to produce the radical 
cation ABTS+ [33]. The ABTS radical cation (ABTS+) was produced by reacting 
ABTS stock solution with a 2.45 mM potassium persulfate (final concentration) and 
incubating the solution in the dark at room temperature for 12–16 h before use. Trolox 
(a Vitamin E analogue) standards (Calbiochem) were prepared in PBS over the range 
0–15 µM. For the standardization of  the starting point of  all assays and standards, a 
10 µl sample/Trolox standard was added to 1 ml ABTS ± solution (A734 nm = 0.700 
± 0.020) and an absorbance reading taken exactly 1 min after initial mixing until the 
decrease in absorbance ceased. Antioxidant activity was expressed as mmol Trolox/ 
mg protein).

Catalase assay

Catalase (CAT) activity was determined spectrophotometrically according to Aebi 
et al. [34]. This method was based on the disappearance of  H2O2 at 240 nm in the 
reaction medium containing 30 mM H2O2, 50 mmol/L potassium phosphate buffer 
pH 7.0 and 0.1 ml sample. Catalase activity was expressed as U/mg protein. 

Determination of superoxide dismutase (SOD) activity 

The activity of  SOD was measured as the percent of  inhibition of  epinephrine 
autooxidation under base conditions by tissue sampling. The activity of  total SOD 
was measured kinetically, as the change of  extinction in time (10 minutes) at 480 nm 
wavelength [35]. The reaction mixture contained Na-bicarbonate buffer (50 mmol/L, 
pH 10.2) and epinephrine (0.5mmol/L) and 0.1 ml of  the sample; the reaction started 
by adding 0.1 ml of  epinephrine solution (0.01 M into 0.01 M HCl). Change of  
extinction of  the same reaction mixture into which 0.1 ml 0.01 M HCl was added was 
used as a blind trial relative to which the inhibition was calculated. Activity of  SOD 
was presented as U/mg of  protein. 
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Determination of GPx activity

Glutathione peroxidase (GPx) determination was based on oxidation of  reduced GSH 
with GPx using NADPH in reaction catalyzed by enzyme glutathione reductase (GR). 
Decrease of  absorbance at 340nm as a result of  used NADPH+H+ represents the 
measure of  GPx activity in coupled reaction with GR [36].

Protein content

The protein content of  the samples was determined by the method of  Lowry et al. 
[37] using bovine serum albumin as standard.
All chemicals were obtained from Sigma (Sigma Chemical Co., St. Louis, MO, USA). 

Statistical Analysis

Results were analyzed by standard statistical methods, expressed as mean ± standard error of  the 
mean (SEM), and graphically presented (Statistical program GraphPad Prism 6). Significance 
of  the differences between the experimental and control groups was determined by Student’s 
t-test and Two way ANOVA. P values below 0.05 were considered statistically significant.

Ethical Considerations 

The ethics protocol was approved by The Laboratory Animals Maintenance and Usage 
Committee of  the Faculty of  Medicine, Belgrade University.

RESULTS

Effects of D,L-homocysteine on isolated rat duodenal motility

The values of  tone, amplitude and frequency of  spontaneous contractions in 
longitudinal smooth muscle segments from the rat duodenum in Tyrode solution are 
shown in Table 1. Two hours incubation in D,L-homocysteine significantly enhanced 
the tone, amplitude and frequency of  spontaneous contractions (Table 1.). The mean 
values were tested by Student’s t- test. The difference was statistically significant 
(***p<0.001).

Table 1. Effects of  D,L-homocysteine on the tone, amplitude and frequency of  isolated 
rat duodenum- longitudinal muscle layer. Values are expressed as mean ± SE. ***p<0.001, 
statistically different from the control group.

Tone (mg)
(mean±SD)

Amplitude (mg)
(mean±SD)

Frequency (min)
(mean±SD)

Control 102.9±2.88 120.3±2.27 9.81±0.41

Hcy (0.6 µmol/g bm) 199.9±5.88*** 219.3±2.29*** 18.53±0.53***
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Effect of D,L-homocysteine on the contractile response  
of rat duodenal smooth muscle

Cumulative concentration-response relationships for acetylcholine-induced 
contraction in duodenal smooth muscle were determined by addition of  acetylcholine 
(ACh) in successive concentrations increments (10-9-10-2 M). To determine whether 
the contractile response of  ACh is modified by D,L-homocysteine (D,L-Hcy), 
cumulative additions of  acetylcholine was also performed in the presence of  D,L-
homocysteine (0.6 μmol/g bm).  D,L-homocysteine has been added 30 min prior to 
acetylcholine. Addition of  the sulfur amino acid to the incubation buffer increased the 
baseline tone. The effects of  homocysteine on the cumulative contractile responses 
of  acetylcholine are shown in Figure 1. D,L-homocysteine modified the contractile 
effect of  acetylcholine (Fig. 1.). The concentrations of  acetylcholine that produced a 
half-maximal contraction were significantly different in the presence of  homocysteine 
(*p<0.05).  The EC50 values in the control (ACh) and experimental group (ACh plus 
D,L-Hcy) were also calculated and presented in Table 2. The dose response curve was 
shifted to the right in the presence of  D,L- homocysteine. 

Table 2. Values of  EC50 in the control (only ACh) and experimental group  
(ACh plus D,L-Hcy)

EC50 value Control D,L-Hcy

LogEC50 -6.624 -6.827

EC50 4.207 µM 6.712µM

Figure 1. Dose-dependent response of  rat duodenal segments to ACh alone (control) and ACh 
plus D,L-homocysteine (treated with 0.6 μmol/g D,L-Hcy). Each curve was drawn from the 
results obtained in six experiments. Ordinate scales show contractions expressed as milligrams 
of  the maximal contractile effect. Vertical lines shows mean ± SE. (*p<0.05, statistically 
different from Tyrode; #p<0.05, statistically different from Homocysteine)
Figure 2. Acetylcholinesterase activity (means ± SE) in duodenal homogenates in the control 
group and group treated with D,L-Homocysteine (D,L-Hcy); ***p<0.001, statistically different 
from the control
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Acetylcholinesterase activity in homogenized duodenal segments 

The AchE activity determined in homogenized duodenum in the control and 
experimental group (treated with D,L-Hcy) is presented in Figure 3. Enzyme activity 
from homogenized tissue of  rats treated with D,L-homocysteine was decreased 
compared to the control group. Moreover, this activity was significantly lower 
compared to control values for the duodenum (by 55.90%) (Fig 3.). 

Effects of L-NAME on the tone, amplitude and frequency  
of spontaneous contractions of isolated rat duodenum in  
the presence of D,L-homocysteine and TEA

Involvement of  SDK channels in nitrergic responses was tested by SDK channels 
nonselective blocker teatraethylamonium chloride (TEA). After 30 min incubation 
in the presence of  10 µmol/L TEA, L-NAME (30 μmоl/L) was added (Fig. 3.).  
Effects of  L-NAME tone (p<0.05), amplitude (p<0.05) and frequency (p<0.05) of  
spontaneous contractions of  isolated duodenal muscle strips were potentiated in the 
presence of  TEA and D,L-Hcy (Table 3.) 

Table 3a. Effects of  L-NAME on isolated duodenal contractions in the presence of  D,L-Hcy

Control Tyrode+L-NAME D,L-Hcy D,L-Hcy+L-NAME

Tone 100% 376.47% 202.63% 665.46%

Amplitude 100% 160.02% 180.59% 355.94%

Frequency 100% 290.55% 193.02% 366.78%

Figure 3. Effects of   TEA on tone (A), amplitude (B) and frequency (C) of  spontaneous 
contractions of  isolated rat duodenum in Tyrode solution (TEA) and in presence of  D,L- 
homocysteine (TEA+D,L-Hcy). Values are expressed as mean ± SE (statistically different from 
the control group, ***p<0.001)
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Table 3b. Effects of  L-NAME on isolated duodenal contractions in the presence of   
D,L-Hcy and TEA

Control TEA TEA+D,L-Hcy TEA+D,L-Hcy+L-NAME

Tone 100% 535.92% 578.95% 526.66%***

Amplitude 100% 401.03% 411.97% 445.53%***

Frequency 100% 200.11% 219.29% 253.46%***

Data are presented as % of  changes compared to control value; ***p<0.001).

Effects of D,L-homocysteine on the biomarkers of oxidative stress  
in isolated rat duodenum

The acute administration of  D,L-Hcy  induced  statistically significant changes in the 
values of  the biomarkers of  oxidative stress in the duodenum of  rats sacrificed 2 h 
after the i.p. injection. Importantly, the activity of  the anti-oxidative enzymes (CAT, 
SOD, GPx) was reduced when compared to the controls (Fig. 4.). Furthermore, lipid 
peroxidation, as assessed by TBARS production, was increased compared to the 
control group (Fig. 4). Our results showed a statistically significant decrease of  TAS, 
measured as mmol Trolox/mg protein (Fig. 4).

DISCUSSION

The gastrointestinal tract is a significant site of  sulfur amino acid metabolism [38]. 
The gastrointestinal tract accounts for 25% of  whole body transmethylation and 

Figure 4. Effects of  D,L-homocysteine on activity of  catalase (A), TBARS concentration (B), 
TAS concentration (C), SOD activity (D) and GPx activity (E) (statistically different from the 
control group; *p<0.05,**p<0.01, ***p<0.001)
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transsulfuration pathways and is a prominent site of  net Hcy release [15]. As reported 
previously, Hcy has been shown to change intestinal motility, in both a procinetic 
and inhibitory pattern, acting by modulation of  nitrergic innervation or by potassium 
channels [26,39]. The present study was undertaken to expand upon those initial 
findings and to assess the effect of  D,L-homocysteine  on the duodenal motility, 
especially mechanisms involving nitrergic and cholinergic pathways. 
In the experiments reported here, the results indicate an increase in the tone, amplitude 
and frequency of  spontaneous contractions of  isolated rat duodenum in D,L-Hcy- 
treated animals versus the control (Tyrode solution). The largest increase was observed 
in the amplitude of  contraction. It has been shown previously that Hcy potentiates the 
depolarization of  murine proximal colon cells, including the increase of  the amplitude 
and frequency of  spontaneous contractions of  murine colonic stripes [26]. Our 
results supported this finding. Our previous work [40] showed that D,L-homocysteine 
thiolactone (D,L-HCT) stimulated duodenal contractility. Choe et al. [41] demonstrated 
that methionine, the Hcy precursor, enhanced the contractile activity of  human colon 
smooth muscle in vitro. In contrast, HHC mice model showed delayed intestinal transit 
due to elevated levels of  inflammatory cytokines and increased expression and activity 
of  MMP-9 in colonic mucosa [15]. Although there is proven higher contractility during 
D,L-Hcy treatment, the mechanism by which D,L-Hcy affects duodenal contractility 
has not been clearly elucidated. Some of  the effects could be achieved by modulating 
cholinergic or nitrergic innervation. Homocysteine can cause significant endothelial 
impairment of  NO bioactivity [42]. Gastrointestinal smooth musculature is similar to 
blood vessel muscles, so we investigated how elevated homocysteine levels affect NO-
mediated and Ach-mediated neurotransmission in the gut.
The present data demonstrated that an acute application of  D,L-Hcy intensify 
acetylcholine-induced contraction of  the isolated rat duodenum. The potentiation of  
ACh-induced contraction by D,L-Hcy in our preparation seems not to be related to 
a direct agonistic effect of  D,L-Hcy on muscarinic receptors, since this sulfur amino 
acid does not alter the contractile effect of  acetylcholine on intestinal smooth muscle, 
and the effect is mediated through the activation of  M2 or M3 receptors [43,44]. 
The mammalian gut wall contains a distinct class of  intrinsic inhibitory motoneurons, 
the so-called non-adrenergic non-cholinergic (NANC) neurons [45]. These neurons 
mediate functional relaxations of  the gut [46]. NO also regulates the peristaltic reflex of  
the intestine [47]. At least a portion of  the mechanical effect of  NO are a consequence 
of  the hyperpolarization of   the membrane potential that results in reduced smooth 
muscle excitability. The most potent inhibitor of   NO production is L-NAME [48] 
which has been used by many investigators to determine the role of  nitric oxide in 
gastrointestinal physiological and pathophysiological conditions.
In our experiments, L-NAME enhanced the tone, amplitude and frequency of  the 
contractions of   isolated duodenal muscle strips compared to the control, but after 
adding D,L-Hcy in the presence of  L-NAME, the higher increase appeared. Our 
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results suggest that the mechanisms of  Hcy action on duodenal contractions are based 
on the modulation of  nitrergic neurotransmission.
Mechanosensitive neural reflexes modulate the contractile behavior and movement 
of  luminal contents in the GI tract [49,50]. Mechanosensitive neurons exist in both 
the small and large intestines and neural reflexes have been studied in vivo and in 
vitro [51,52]. Neurotoxins, receptor antagonists, block post-junctional ion channels 
mediating inhibitory responses depolarize GI muscles, increase action potentials and 
augment contractions [53,54]. Recent data showed that responses of  colonic muscle 
strips to stretch are superimposed upon ionic mechanisms activated by inhibitory 
neurotransmitters. Stretch responses require tonic release of  NO, but replacement of  
NO synthesized by neurons is capable of  supporting stretch responses. They interpret 
these findings by considering that mechanosensitive ion channels in post-junctional 
cells modulate the gain on enteric neural inhibitory input to the colon [55].
Previous studies have shown that SDK channels are blocked by sulfur-containing 
amino acids, such as L-methionine, and this compound has also been shown to inhibit 
the SDK channels activated during nitrergic stimulation in murine colonic muscles. 
According to our results, TEA (10 mmol/L), a nonselective blocker of  K channels, 
stimulates spontaneous contractility of  longitudinal duodenal muscle layer. Data showed 
that effects of  addition of  L-NAME to tissues pre-incubated with D,L-Hcy and TEA 
(tone, amplitude, frequency) were blocked compared to the effects of  L-NAME on 
segments preincubated in D,L homocysteine alone. We thought that K+ ion channels 
may modulate the enteric neural inhibitory input to the duodenum. Park et al [26] 
suggested that spontaneous neural activity and release of  NO tonically activated SDK 
channels. They showed that nitrergic responses to nerve stimulation were reduced by 
sulfur-containing amino acids. Our data suggest that nitrergic inhibition is mediated, 
in part, by activation of  SDK channels in rat duodenal muscles. The pharmacology of  
SDK channels is ambiguous at the present time, but new blockers of  these channels 
may be potentially useful in controlling GI motility, particularly in disorders involving 
organ distention.
In the current study, we tested the hypotheses that homocysteine impairs oxidative 
stress parameters of  the duodenal smooth muscle tissue. In order to verify whether 
high Hcy levels could alter oxidative status, we evaluated the effect of  acute Hcy 
administration on antioxidant activity in rats.
Our results showed that acute Hcy administration decreased CAT, SOD, GPx activity, 
suggesting that this amino acid causes a reduction on enzymatic antioxidants in the 
duodenum. In agreement with our data, other studies suggest a negative correlation 
between plasma Hcy levels and CAT activity in the liver of  rats, pointing a significant 
reduction of  hepatic antioxidant defenses [56,57].
We also investigated the effect of  Hcy on the parameters of  lipid damage. Lipid 
peroxidation was assessed by TBARS, which identify malondialdehyde, a final product 
of  peroxidation [32]. Lipid peroxidation serves as a marker of  cellular oxidative stress 
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and it is recognized as a major causative factor of  oxidative damage in gastrointestinal 
diseases. Results showed that Hcy increased lipid peroxidation in duodenal tissue 
homogenates. In agreement, data from literature showed that HHC increased 
superoxide anion production, by NAD(P)H oxidase activation, and peroxynitrite 
formation, resulting in lipid peroxidation in the liver of  rats, which could explain 
many processes associated with Hcy-induced cell damage including inflammation and 
apoptosis in liver diseases [56,58]. Furthermore, in our previuos study, it has been 
demonstrated that TBARS concentrations increased after 3h incubation in D,L-
homocysteine thiolactone. We may conclude that duodenal lipid peroxidation appears 
to be strongly associated to Hcy levels.
Our results showed that Hcy decreased the total antioxidant status of  homogenates 
from the duodenum suggesting that this amino acid causes the acute decrease of  non-
enzymatic antioxidants in the duodenum. According to literature, patients with diabetes 
mellitus, cardiovascular disease and gastrointestinal disease, obesity and metabolic 
syndrome showed decreased level of  TAS during chronic exposition to high levels of  
Hcy [59]. Hyperhomocysteinemia decreased antioxidant defenses, and increased lipid 
peroxidation in the duodenum of  rats, characterizing a reliable oxidative stress.
Taken together, our results presented above qualified the occurrence of  excitatory 
effects of  D,L-Hcy on duodenal motility. The present results provide an additional 
insight into the stimulatory mechanisms of   Hcy, and may contribute to explain 
the complex factors involved in injury exhibited in hyperhomocysteinemic patients: 
cholinergic stimulation, nitrergic inhibition, potassium channel inhibition and 
oxidative stress augmentation.  So, the therapy of  these patients should be complex 
and include corrections in all potential pathways involved in homocysteine effects on 
the gastrointestinal tract: antioxidative therapy, new selective blockers of  potassium 
channels and stimulation of  production of  NO in nitrergic neurons. 
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MNOGOBROJNI MEHANIZMI UKLJUČENI SU U 
STIMULATORNE EFEKTE HOMOCISTEINA NA GLATKU 
MUSKULATURU DUODENUMA PACOVA

STOJANOVIĆ Marija, ŠĆEPANOVIĆ Ljiljana, MITROVIĆ Dušan, ŠĆEPANOVIĆ 
Vuk, ŠĆEPANOVIĆ Radomir, DJURIC Marko, ILIĆ Slobodan, ŠĆEPANOVIĆ Teja, 
DJURIC Dragan

Novije studije potvrdile su povezanost hiperhomocisteinemije i gastrointestinalnih 
oboljenja, mada su i dalje nepoznati direktni efekti homocisteina na gastrointestinal-
nu reaktivnost. Cilj ovog rada bio je da demonstrira kako homocistein moduliše azot 
monoksid zavisnu duodenalnu relaksaciju i da li holinergički receptori i K+ kanali 
imaju uticaja na stimulaciju motiliteta, kao i da ispita da li je oksidativni stres udružen 
sa efektima homocisteina. Eksperimenti su izvedeni na mužjacima pacova, telesne 
mase 250-300g. Dve grupe životinja tretirane su i.p. aplikacijom fiziološkog rastvora i 
D,L-Hcy (0,6 µmol/g tm). Posle 2h inkubacije, duodenalni segmenti su pripremljeni 
za biohemijske analize i praćenje kontraktilnog odgovora u izolovanom kupatilu sa 
Tirodovim rastvorom. Praćeni su efekti TEA (10 mmol/L) i L-NAME (30 µmol/L) 
na kontraktilnost duodenuma u prisustvu D,L-Hcy (0,6 µmol/g tm). Povišen nivo ho-
mocisteina bio je od ključne važnosti za pogoršanje kontraktilne funkcije, kroz relak-
saciju posredovanu azot monoksidom, kao i, delom kroz aktivaciju K+ kanala. Hcy je 
pokazao direktno promuskarinsko dejstvo, s obzirom na to da je tridesetominutni pre-
tretman duodenuma značajno povećao kontraktilne efekte rastućih koncentracija Ach 
(10-9-10-2 mol/L). Aktivnost katalaze, superoksid dismutaze, glutation peroksidaze i 
totalni antioksidativni status bili su sniženi, dok su vrednosti TBARS-a bile povišene. 



Acta Veterinaria-Beograd 2017, 67 (2), 254-270

270

Naši rezultati ukazali su na konzistentno oštećenje gastrointestinalnog trakta izazvano 
sumporovitom aminokiselinom-homocisteinom. Ovo može doprineti, bar delom, 
objašnjenju mehanizama uključenim u povezanost hiperhomocisteinemije sa gastroin-
testinalnim oboljenjima u humanoj populaciji. 


